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We address a significant difficulty in the numerical computation of fluid interfaces with
soluble surfactant that occurs in the physically representative limit of large bulk Peclet
number Pe. At the high values of Pe in typical fluid-surfactant systems, there is a transition
layer near the interface in which the surfactant concentration varies rapidly, and large gra-
dients at the interface must be resolved accurately to evaluate the exchange of surfactant
between the interface and bulk flow. We use the slenderness of the layer to develop a fast
and accurate ‘hybrid’ numerical method that incorporates a separate, singular perturbation
analysis of the dynamics in the transition layer into a full numerical solution of the inter-
facial free boundary problem. The accuracy and efficiency of the method is assessed by
comparison with a more ‘traditional’ numerical approach that uses finite differences
on a curvilinear coordinate system exterior to the bubble, without the separate transition
layer reduction. The traditional method implemented here features a novel fast calculation
of fluid velocity off the interface.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Surfactants, or surface contaminants, significantly alter the interfacial properties of a fluid by changing surface tension. A
striking example is the tipstreaming of thin threads or small droplets from a drop or bubble that is stretched in an imposed
extensional flow. Although first observed by Taylor [1] in his seminal four-roller mill experiments, tipstreaming has only re-
cently been ascribed to the presence of surfactant [2–4], and surfactant mediated tipstreaming has now been utilized to syn-
thesize micron-sized and smaller droplets in a flow focusing device [5]. Other applications of surfactants include their
addition to two-phase mixtures or emulsions to facilitate breakup of large droplets and prevent coalescence of smaller ones,
thereby stabilizing the emulsion [6]. In medicine, surfactant treatments may reduce risks from gas bubbles in the blood
(embolisms) formed during cardiac surgery or rapid decompression, and are used in the reopening of collapsed pulmonary
airways [7,8].

Most previous computational studies of the effect of surfactant in interfacial flow are for surfactant that is insoluble, that
is, confined to the interface alone. The evolution of surfactant concentration is then determined by a combination of surface
fluid velocity, surface diffusion and local stretching or contraction of the interface. Under the simplification of low Reynolds
number flow, the evolution is entirely described by surface quantities, and can be solved by surface-based methods such as
the boundary integral method [9]. This is among the most accurate and efficient numerical methods for solving free and
moving boundary problems.

Boundary integral simulations of the effect of insoluble surfactant on the deformation and breakup of axisymmetric drops
in extensional flow by Stone and Leal [10] characterize the dependence of drop deformation on the capillary number
Q ¼ lGa=r0, where G is the imposed strain rate, r0 is the surface tension of a clean or surfactant-free interface, a is the
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undeformed radius of the drop, and l is the suspending liquid viscosity. They consider the case when the ratio k ¼ li=l of
drop to suspending liquid viscosity is one, but the simulations were later generalized by Milliken et al. [11] to include dif-
ferent viscosity ratios. The most interesting behavior was observed for nearly inviscid drops k� 1, when surfactant was
found to advect with the stretching flow to the drop ends, which become pointed due to the lower surface tension there.
Above a critical capillary number the drop appears to stretch very quickly, but tipstreaming was not resolved due to the near
singularity in curvature at the drop ends. Volume-of-fluid (VOF) simulations [12] for low viscosity ratio drops with insoluble
surfactant show similar behavior. Droplets or small drop fragments appear to be emitted from pointed bubble tips but are on
the scale of the mesh spacing and are therefore not properly resolved, so that tipstreaming may have been introduced as a
numerical artifact. Related VOF studies are [13,14]. To our knowledge, the only resolved numerical calculations showing
drop shapes with pointed tips from which thin threads are emitted, evoking the tipstreaming observed in experiments,
are the boundary integral simulations of Eggleton et al. [3] and Bazhlekov et al. [15]. Tipstreaming behavior has also been
observed in boundary integral simulations of two dimensional flow [16–18].

The above results underscore the need to accurately resolve regions of high interfacial curvature in calculations of bubble
and drop dynamics, for which boundary integral methods are ideally suited. Other boundary integral studies of drop evolu-
tion with insoluble surfactant include [19–23]. Immersed boundary methods [24–26] and the level set method [27] have also
been applied to study the effect of insoluble surfactant on the dynamics of fluid interfaces.

The computational challenges of simulating interfacial flow with surfactant are compounded when the surfactant is sol-
uble. A soluble surfactant advects and diffuses as a passive scalar in the bulk fluid, but there is an exchange or transfer of
surfactant between its dissolved form in the bulk and its adsorbed form on the interface. Gradients of bulk surfactant con-
centration near the interface must be accurately computed to properly account for the exchange of surfactant between its
dissolved and adsorbed forms.

In this paper, we address a significant difficulty in the numerical computation of fluid interfaces with soluble surfactant
that occurs in the practically important limit of large bulk Peclet number Pe. The Peclet number Pe measures the ratio of bulk
advective to diffusive transport, and its value in typical systems varies from 105 to 106 [28,29]. At these high values of Pe,
there is a narrow transition layer adjacent to the interface across which the surfactant concentration varies rapidly. Accu-
rately resolving the layer is a significant challenge for traditional numerical methods but is essential to evaluate the ex-
change of surfactant between the interface and bulk flow. Previous studies have employed artificially small Pe or finely
adapted grids in specific static geometries. The work described here uses the slenderness of the layer to develop a fast
and accurate ‘hybrid’ or multiscale numerical method that incorporates a separate, singular perturbation analysis of the
dynamics in the transition layer into a full numerical solution of the interfacial free boundary problem. A key to the success
of this formulation is that highly accurate boundary integral or boundary element methods can readily be adapted to solve
the full moving boundary problem, including soluble surfactant. Without the special large Pe treatment proposed here these
methods do not easily apply.

The difficulties associated with computing interfacial flow with soluble surfactant were avoided in the study of [30] by
specifying the computationally tractable but less physically realizable limit Pe� 1. Other numerical studies of soluble sur-
factant dynamics involving simple geometries or finely adapted three dimensional meshes for deformed interfaces are
[29,31–36]. Ghadiali et al. [37] implemented a dual reciprocity boundary element method to solve for the steady state advec-
tion–diffusion of bulk surfactant. This has some features in common with the method proposed here, in that a boundary (ele-
ment) method is used to solve the Stokes equations, while the bulk surfactant concentration is solved on internal nodes that
do not have to be re-meshed as the boundary changes shape during iteration, as is required by other techniques (e.g. finite-
element and finite difference methods). However, the method does require more internal nodes to be placed in positions of
large concentration gradients, which can be expensive for realistic Pe values, and it is limited to steady state problems.

Recently, front tracking [36,38], diffuse interface [39], and volume of fluid [40] numerical methods have been designed to
treat the effect of soluble surfactant in various examples of interfacial flow. But without adaptive or very fine meshes near
the moving interface, these methods are limited to artificially small Pe due to the separation of spatial scales in the narrow
transition layer and the need to accurately resolve it. In the context of mixing of miscible fluids, the study [41] combines
front tracking with asymptotic treatment of the diffusion of mass across a near-discontinuity in density in the small diffusion
limit.

In this paper we develop an accurate and efficient hybrid numerical algorithm, based on a boundary integral simulation of
free surface Stokes flow. The hybrid method has the same advantages as the dual reciprocity method of [37], but applies to
the simulation of time-dependent flow, and computes efficiently at arbitrarily large values of Pe without the need to intro-
duce additional node points in regions of large gradient of bulk surfactant concentration. We implement and test the method
in the case of a single, inviscid bubble that is stretched by an imposed linear strain or shear in 2D Stokes flow, although the
hybrid method itself applies, with modifications, to more general flow in 3D and to multiple drops or bubbles.

The accuracy and efficiency of the hybrid method is assessed by comparison with a more ‘traditional’ numerical approach
that uses finite differences on a curvilinear coordinate system exterior to the bubble, without the separate transition layer
reduction.

The choice of underlying flow solver for the velocity, pressure, and surface concentration of surfactant used in both the
hybrid and traditional methods is a boundary integral method based on a complex variable, conformal mapping represen-
tation of 2D Stokes flow. As explained below, this choice facilitates a traditional method that is in fact relatively efficient
among finite difference methods and permits sufficient mesh refinement that it can compute well at Pe sufficiently large,
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up to Pe ’ 104, to facilitate a thorough test and comparison with the hybrid method. In particular, the traditional method
features a novel, fast calculation of the fluid velocity in the region exterior to the bubble, without which the method would
be prohibitively expensive.

The rest of this paper is organized as follows: The governing equations are presented in dimensionless form in Section 2.
In Section 3 equations for the bulk and surface concentrations of surfactant are derived, based on a singular perturbation
analysis in the large bulk Peclet number limit. The derivation in Section 3 is general, and the resulting equations describe
surfactant dynamics at large Pe for interfaces in 3D Stokes flow with soluble surfactant. The boundary integral formulation
of the equations governing fluid flow and interfacial surfactant concentration is given in Section 4. The hybrid numerical
method is presented in Section 5 and the traditional method is presented in Section 6. Numerical results are given in Section
7, and concluding remarks are in Section 8. An asymptotic solution used in the validation of the hybrid method is derived in
Appendix.

2. Governing equations

In this section we present the governing equations in nondimensional form following the formulation in [42]. Consider an
inviscid bubble placed in two dimensional, incompressible slow viscous flow. The exterior fluid has viscosity l and the same
density as the interior fluid, so that the bubble is neutrally buoyant and gravitational effects are ignored. The pressure pi of
the inviscid interior fluid is constant in space, and without loss of generality is chosen to be zero. As a consequence of this
choice, the pressure at infinity p1ðtÞ is generally nonzero and time-dependent. The unbounded exterior region of fluid is de-
noted by X, while the fluid interface between the bubble and exterior bulk fluid is denoted by S. We follow the convention
that the unit normal vector n on S points into X, and the unit tangent vector t on S points in the clockwise direction.

We take the zero Reynolds number limit, in which the nondimensional governing equations for the flow are the Stokes
equations
r2u ¼ rp; r � u ¼ 0; x 2 X; ð1Þ
where u ¼ uðx; yÞ is the fluid velocity and p ¼ pðx; yÞ is the pressure in Cartesian coordinates ðx; yÞ. All lengths are nondimen-
sionalized by the radius a of the equivalent, undisturbed circular bubble, and with r0 as the interfacial surface tension in the
absence of surfactant the velocity is made nondimensional by the capillary scale U ¼ r0=l. Time and pressure are nondimen-
sionalized by a=U and r0=a.

On the interface S we impose the kinematic condition that the normal velocity un at a point on the boundary equals the
normal velocity of the fluid there, i.e.
un ¼ u � n; ð2Þ
while the stress-balance at the interface is
�pnþ 2e � n ¼ rðj1 þ j2Þn�rsr: ð3Þ
Here e is the rate-of-strain tensor, eij ¼ 1
2 ð@xj

ui þ @xi
ujÞ; ji ði ¼ 1;2Þ are the principal curvatures of S and rs ¼ $� nðn � $Þ is

the surface gradient. The quantity r in Eq. (3) is the surface tension, which depends on the adsorbed or surface concentration
of surfactant C. The presence of surfactant generally acts to reduce surface tension, and a specific choice for the equation of
state is the Langmuir equation
r ¼ 1þ E lnð1� CÞ; ð4Þ
which models a nonlinear dependence of r on C. The surface tension has been made nondimensional by its value r0 for a
clean or surfactant-free interface, the surface surfactant concentration has been made nondimensional by its maximum
monolayer packing concentration C1, and E ¼ RTC1=r0 is the elasticity number, which is a dimensionless measure of the
sensitivity of surface tension to adsorbed surfactant concentration. In practice, the surface tension has a strictly positive low-
er bound rth that occurs at some threshold value of C < 1.

When the adsorbed surfactant concentration C varies from point to point on S there is a spatial gradient of the surface
tension that is represented in the stress-balance relation (3) by rsr and which is referred to as the Marangoni stress. Many
of the important features and novel dynamics of surfactant-laden flows are in some way attributable to Marangoni stress,
but an exception is discussed in [43].

Our focus is on surfactant that is soluble or dissolved in the bulk flow away from an interface, where it is transported as a
passive scalar. Its concentration C, which is made nondimensional by a constant reference value at infinity C1, satisfies the
advection–diffusion equation
@C
@t
þ u � rC ¼ 1

Pe
r2C; x 2 X; ð5Þ
where Pe is the bulk Peclet number Pe ¼ Ua=D, which is the ratio of advective to diffusive transport effects in the bulk, and D
is the diffusivity of dissolved surfactant.

The evolution of surfactant that is adsorbed on the interface S also satisfies an advection–diffusion equation, which was
derived for a general parametric representation of the interface x ¼ Xðn; tÞ in [44], and is
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@C
@t

����
n

� @X
@t

����
n

� rsCþrs � ðCusÞ þ Cðj1 þ j2Þun ¼
1

Pes
r2

s Cþ Jn � rCjS: ð6Þ
Here, us ¼ u� nðu � nÞ is the tangential fluid velocity on S, un ¼ u � n is the normal component of the fluid velocity at the
interface per (2), and Pes ¼ Ua=Ds is the surface Peclet number for surface diffusion of adsorbed surfactant on S. The surface
gradient operatorrs and principal curvatures ji ði ¼ 1;2Þ are as introduced at Eq. (3). On the left hand side of Eq. (6) the first
two terms together ensure that if the interface moves then the time derivative of C is taken at a point on S that moves in the
direction normal to the interface, while the next two terms account for the change in surfactant concentration due to advec-
tive flux along the interface and due to change in interface area caused by motion along its normal. The first term on the right
hand side represents the change in C due to surface diffusion, which is usually negligible since typically Pes � 1, unless large
surface gradients of adsorbed surfactant develop. The last term on the right hand side, Jn � rCjS, accounts for the exchange or
transfer of surfactant between its dissolved form in the bulk flow immediately adjacent to S (the sublayer region) and its
adsorbed form on S, and J ¼ DC1=UC1 is a transfer coefficient that measures the efficiency of this process.

Exchange of surfactant between the bulk phase and interface is a two step process [45]. In the bulk, surfactant is trans-
ported relative to material particles on the interface by diffusion, while exchange between the sublayer and interface occurs
via adsorption–desorption kinetics. The net fluxes of the two steps are equal on S and are given by
j ¼ BiðKð1� CÞCjS � CÞ ¼ Jn � rCjS; ð7Þ
where the second term is the net kinetic flux onto S, i.e. adsorption minus desorption, as described by a Langmuir-type ki-
netic rate expression. Here, the dimensionless parameter K is defined by K ¼ jaC1=jd, where the dimensional kinetic rate
constants are ja for adsorption and jd for desorption, so that K is the ratio of the dissolved bulk surfactant concentration
at infinity to the kinetic rate ratio or surface activity jd=ja. The Biot number is Bi ¼ ajd=U, which is the ratio of the time
scale a=U of capillary flow to the time scale for kinetic desorption. Since it occurs widely in applications, we consider the
diffusion-controlled regime, i.e. the limit Bi!1, in which the flow rate is much less than the adsorption–desorption kinetic
rates, so that the surface exchange kinetics are effectively in equilibrium. In this case, (7) implies that
CjS ¼
C

Kð1� CÞ on S; ð8Þ
which is the equilibrium adsorption relation of the Langmuir isotherm.
We note that the hybrid algorithm developed here for the large Peclet number limit, Pe!1, is not confined to the dif-

fusion-controlled regime. At finite arbitrary Biot number, the Dirichlet boundary condition for C of (8) is simply replaced by
the mixed boundary condition of (7)
Jn � rCjS ¼ BiðKð1� CÞCjS � CÞ:
In this study, the separation of time scales is such that the rate of bulk surfactant diffusion ðD=a2Þ is much less than the flow
rate ðU=aÞ since the Peclet number Pe is large, and the flow rate is much less than the surface kinetic rates since the Biot
number Bi is large.

We assume that the bulk surfactant concentration approaches a constant reference value in the far-field and that the ini-
tial distribution of C is spatially uniform and in equilibrium with this, so that
Cðx;0Þ ¼ 1 for x 2 X; C ! 1 as jxj ! 1: ð9Þ
If the initial configuration is in equilibrium everywhere, then the initial bubble shape is spherical and from (8) the initial
surface concentration of surfactant is Cðx;0Þ ¼ K=ð1þ KÞ.

The boundary condition at infinity corresponding to an arbitrary linear imposed flow is
u ¼
Q B� G

2

Bþ G
2 �Q

 !
� xþ Oðjxj�2Þ as jxj ! 1: ð10Þ
Here Q ¼ aa1=U; B ¼ ab1=U, and G ¼ ax1=U are dimensionless, where Q and B characterize the strain rate of the imposed
flow and Ge3 is its vorticity. Two specific examples of a linear far-field flow that we use here are:

(i) Pure Strain or Hyperbolic Flow
When B ¼ G ¼ 0, the dimensionless far-field boundary condition is
u ¼ Qðx1;�x2Þ þ Oðjxj�2Þ as jxj ! 1; ð11Þ

where Q is the capillary number or dimensionless strain rate.

(ii) Simple Shear

A simple shear flow is given by setting Q ¼ 0 and G ¼ �2B–0, for which the boundary condition at infinity is
u ¼ �Gðx2;0Þ þ Oðjxj�2Þ as jxj ! 1: ð12Þ
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3. The large bulk Peclet number limit

When the bulk Peclet number Pe is large a narrow transition layer in the bulk surfactant concentration C can develop
adjacent to the interface. The layer has spatial width of order Pe�1=2 in which the normal gradient of C is large. In the low
Reynolds number limit there is no mechanism to support a similar transition layer in the fluid velocity and pressure.

To analyze the dynamics within the transition layer it is convenient to introduce an intrinsic or surface-fitted orthogonal
curvilinear coordinate system ðn1; n2;nÞ that is attached to the moving interface S for all time. Here the n1 and n2-directions
are aligned with the principal directions of curvature and n is distance along the normal measured from S. The transforma-
tion between Eulerian coordinates x and intrinsic coordinates is uniquely invertible sufficiently close to S provided S is
smooth. Analysis based on intrinsic coordinates attached to a moving surface has been used before. For example, Matalon
et al. [46] give details of an arbitrary transformation of this type in 3D with application to combustion waves in the flamelet
regime, while Yao and Stewart [47] have used a 2D version in the context of an evolving detonation front.

Here we review the transformation of the material derivative, and quote results for other operators. The origin of the
Eulerian and intrinsic coordinate systems are O and O0, respectively, and the position vector x of a point P in space relative
to O is written in the two coordinate systems as
x ¼ Xðn1; n2; tÞ þ nnðn1; n2; tÞ; ð13Þ
where X is the position vector relative to O of the projection of P onto S in the direction of the unit normal n, so that S has
equation x ¼ Xðn1; n2; tÞ. Since n1 and n2 are principal directions on S they define an orthogonal coordinate system on the sur-
face, and the unit vectors ei ði ¼ 1;2Þ tangential to S in the directions of increasing ni are ei ¼ 1

ai

@X
@ni

where ai ¼ j @X
@ni
j. With the

usual convention, the unit normal field is n ¼ e1 � e2, and since the ni are principal directions Rodrigues’ formula implies that
@n
@ni
¼ ji

@X
@ni

where the ji are the principal curvatures of S. The change in x corresponding to increments in the intrinsic coor-
dinates with time fixed is therefore
dx ¼ l1dn1e1 þ l2dn2e2 þ dnn
where li ¼ aið1þ njiÞ ði ¼ 1;2Þ: ð14Þ
This convention for n implies that, for the curve of a normal section of S with a plane containing n and ei, the curvature ji is
positive when the curve is convex on the side to which n points, and is negative otherwise.

With P fixed relative to O, the time derivative in the Eulerian frame transforms as
@

@t
#

@

@t
þ q � rt þ

@n
@t

@

@n
: ð15Þ
Here @t on the right hand side is in the moving frame, i.e. with intrinsic coordinates fixed,
rt ¼
1
l1

@

@n1
e1 þ

1
l2

@

@n2
e2
is the projection of the gradient onto the tangent plane at P, and
q ¼ l1
@n1

@t
e1 þ l2

@n2

@t
e2;
so that q is the velocity of P relative to O0 projected onto the tangent plane at P. Since P is fixed relative to O, this is also
q ¼ �Us where Us is the velocity of O0 relative to O projected onto the tangent plane at P. Also, � @n

@t is the normal speed of
the surface S relative to O in the direction of n, which was written earlier in the kinematic condition (2) as un.

The fluid velocity u at an arbitrary point P in the Eulerian frame is written in terms of its projection onto the tangent plane
ut and its component in the normal direction up as u ¼ ut þ upn. The gradient operator is written similarly as r ¼ rt þ n @

@n,
so that u � r ¼ ut � rt þ up

@
@n. As n! 0 and S is approached the surface quantities are recovered, so that with the same nota-

tion as in Eqs. (2) and (6), ut ! us; up ! un and rt !rs. Then from Eq. (15) the material derivative transforms as
D
Dt

#
@

@t
þ vt � rt þ vp

@

@n
where vt ¼ ut � Us is the fluid velocity relative to O0 projected onto the tangent plane at P and vp ¼ up � un is the normal
component of the fluid velocity relative to S.

In the interface-attached intrinsic frame, Eq. (5) for the transport of surfactant in the bulk flow is therefore
@C
@t
þ vt � rtC þ vp

@C
@n
¼ �2r2

s C; ð16Þ
where � ¼ Pe�1=2 and the Laplacian is expressed in intrinsic coordinates. In the limit of large Pe, i.e. small �, the bulk surfac-
tant concentration C in the narrow transition layer adjacent to S depends on a local normal coordinate N, where n ¼ �N and
N ¼ Oð1Þ as �! 0. While C ¼ Cðn1; n2;N; t; �Þ within the layer, there is no mechanism available to support a similar separa-
tion of spatial scales for the fluid velocity, so that v ¼ vt þ vpn ¼ vðn1; n2;n; t; �Þ.
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An approximate equation for the evolution of C within the layer is given by keeping only the leading terms in an expan-
sion for small �. In this approximation, the tangential velocity vt is replaced by its value on S,
vs ¼ us � Us ð17Þ
which is of order Oð1Þ except, for example, near stagnation points on the surface, and rt is replaced by rs. Since S is a fluid
interface, the kinematic condition implies that vp vanishes on S, so that it is replaced by the first nonzero term of its Taylor
expansion, �N@nvpjs where the normal derivative @nvpjs is evaluated on S. The small Oð�Þ estimate in size of this coefficient in
Eq. (16) multiplies the normal gradient of C, which is approximated by ð1=�Þ@NCðn1; n2;N; t; 0Þ. In a similar way, the small
diffusion coefficient of Eq. (16) is magnified by the Laplacian of C within the layer, so that the right hand side of (16) is
approximated by @2

NCðn1; n2;N; t; 0Þ. The reduced equation that results for the evolution of a first approximation to C within
the layer is therefore
@C
@t
þ vs � rsC þ

@vp

@n

����
s

N
@C
@N
¼ @2C

@N2 : ð18Þ
Consideration of higher order terms in the expansion implies that the error in approximating C by the solution of this equa-
tion is of order Oð�Þ as �! 0.

The large Pe limit implies that outside the transition layer ð@t þ u � rÞC ¼ 0 to within Oð�Þ, so that to this order C is con-
stant on particle paths. The initial condition of (9), which holds for all x then implies that C � 1 outside the transition layer
for all time, so that (18) has initial, boundary and matching conditions
Cðn1; n2;N; 0Þ ¼ 1; CjN¼0 ¼
C

Kð1� CÞ ;

Cðn1; n2;N; tÞ ! 1 as N !1; t > 0:
ð19Þ
At a first glance, the coefficient @nvpjs in Eq. (18) appears to require the evaluation of off-surface data to compute the nor-
mal derivative. However, from the incompressibility condition r � u ¼ 0 written in the orthogonal curvilinear, intrinsic
frame
1
a1a2

@

@n1
ða2ð1þ nj2Þu1ÞÞ þ

@

@n2
ða1ð1þ nj1Þu2Þ

� �
þ @

@n
ðð1þ nj1Þð1þ nj2ÞupÞ ¼ 0;
where the tangential velocity is written in terms of its components as ut ¼ u1e1 þ u2e2 and up ¼ vp þ un. When the incom-
pressibility condition is evaluated in the limit as n! 0, the first two terms tend to the surface divergence rs � us, and since
the normal speed un of the surface is independent of n, so that @nup ¼ @nvp, the condition implies that
@vp

@n

����
S

¼ �ðj1 þ j2Þun �rs � us; ð20Þ
where the right hand side contains surface data alone.
The transfer coefficient J in the bulk-interface exchange term Jn � rCjS is rescaled by putting J ¼ �J0 where J0 ¼ Oð1Þ so

that in Eq. (6) for conservation of adsorbed surfactant the exchange term remains Oð1Þ when expressed in terms of the re-
scaled coordinate N. The equation becomes
@C
@t

����
n

� @X
@t

����
n

� rsCþrs � Cusð Þ þ Cðj1 þ j2Þun ¼
1

Pes
r2

s Cþ J0
@C
@N

����
S

: ð21Þ
The initial boundary value problem (18) and (19) for C within the transition layer and the rescaled bulk-interface ex-
change term of (21) have been constructed by a (formal) leading order, singular perturbation rescaling of the full equations
in the limit Pe!1. As a result, the expansion parameter Pe does not appear in the rescaled model.

4. Boundary integral formulation

A complex variable representation is used to provide a boundary integral formulation of the governing equations which is
based on the work of Tanveer and Vasconcelos [48], Antanovskii [49], and Siegel [42]. It includes the effects of soluble sur-
factant assuming that the bulk-interface exchange term Jn � rCjS is known via separate computation. We briefly summarize
the formulation of [48], including the necessary modifications of [42] to account for the presence of surfactant. These refer-
ences contain more complete details of the derivation.

4.1. Complex variable representation of Stokes flow

We introduce a stream function wðx; yÞ and a stress function /ðx; yÞ which satisfy [50]
r2w ¼ �x; r2/ ¼ p;
where x is the fluid vorticity. The Stokes Eq. (1) imply that / and w obey the biharmonic equation
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r4/ ¼ r4w ¼ 0:
The complex stress-stream function is defined by Wðz;�zÞ ¼ /ðx; yÞ þ iwðx; yÞ, where z ¼ xþ iy and the bar denotes complex
conjugate, for which a Goursat representation of solutions of the biharmonic equation implies that Wðz;�zÞ can be written as
(see, e.g. [51])
Wðz;�zÞ ¼ �zf ðzÞ þ gðzÞ;
where f and g are analytic functions in the fluid region X. Nondimensional physical quantities can be expressed in terms of f
and g as (see, e.g. [52])
p� ix ¼ 4f 0ðzÞ; ð22Þ
u1 þ iu2 ¼ �f ðzÞ þ z�f 0ð�zÞ þ �g0ð�zÞ; ð23Þ
e11 þ ie12 ¼ z�f 00ð�zÞ þ �g00ð�zÞ; ð24Þ
where �f denotes the (analytically continued) conjugate function �f ðzÞ ¼ f ð�zÞ and a prime denotes the derivative. Here u1 þ iu2

is a complex velocity, e11 þ ie12 is a complex rate-of-strain function, and the dependence on time has temporarily been
suppressed.

We introduce the conformal map zðf; tÞ which takes the unit disc jfj < 1 in the f-plane into the fluid region X of the z-
plane. The map takes the form
zðf; tÞ ¼ aðtÞ
f
þ hðf; tÞ; ð25Þ
where hðf; tÞ is analytic, hð0; tÞ ¼ 0 without loss of generality, and zfðf; tÞ–0 in 0 6 jfj 6 1 over some nonzero time interval.
The extra degree of freedom allowed by the Riemann mapping theorem permits aðtÞ to be chosen real and negative.

The boundary conditions in the far-field z!1 determine the behavior of f ðzðf; tÞ; tÞ and dg
dz ðzðf; tÞ; tÞ as f! 0. Since

p! p1ðtÞ and x! G in this limit, from (22) and (25),
f ðzðf; tÞ; tÞ � aðtÞðp1ðtÞ � iGÞ
4f

þ CðtÞ þ OðfÞ; ð26Þ
as f! 0, while (10), (23), and (26) imply that
dg
dz
ðzðf; tÞ; tÞ � aðtÞðQ � iBÞ

f
þ CðtÞ þ Oðf2Þ ð27Þ
as f! 0. The nondimensional far-field pressure p1ðtÞ and the function CðtÞ are to be determined. We recall from (10) that
there is no translational velocity in the far-field, and we assume that the bubble interior is free of mass sources and therefore
has constant volume.

Eqs. (22)–(24) are used to write the boundary conditions on the bubble surface in terms of f ðzÞ and gðzÞ. The outward unit
normal on the bubble surface n is written in complex form as
N ¼ n1 þ in2 ¼ izs ¼ �f
zf

jzfj
¼ i

zm

jzmj
; ð28Þ
where n1 and n2 are the x and y components of n; s is arclength traversed in the clockwise direction, and f ¼ eim on the unit
circle. When (22) and (24) are substituted into the stress-balance equation (3) an integration with respect to s gives
f ðz; tÞ þ z�f 0ð�z; tÞ þ �g0ð�z; tÞ ¼ � i
2
rðCðs; tÞÞzs ð29Þ
on the bubble surface jfj ¼ 1, where we emphasize the dependence of the surface tension r on the adsorbed surfactant
concentration Cðs; tÞ. Some arbitrariness in the specification of the functions f and g has also been used to set to zero a
function of time that results from the integration. A formula for the velocity on the bubble surface follows on eliminating
g between (23) and (29) to obtain
u1 þ iu2 ¼ �
i
2
rðCðs; tÞÞzs � 2f ðz; tÞ: ð30Þ
A relation between the map zðf; tÞ and the Goursat function f in jfj < 1 follows from the kinematic condition (2) written in
complex form together with (30) and (28) followed by application of the Poisson integral formula to extend the relation
away from the bubble surface, with the result that [48]
zt þ 2f ðf; tÞ ¼ f½Iðf; tÞ þ iD	zf; ð31Þ
where
Iðf; tÞ ¼ 1
4pi

I
jf0 j¼1

f0 þ f

f0 � f

� �
rðCðzðf0; tÞ; tÞÞ
jzfðf0; tÞj

df0

f0
; ð32Þ



M.R. Booty, M. Siegel / Journal of Computational Physics 229 (2010) 3864–3883 3871
and f ðf; tÞ denotes f ðzðf; tÞ; tÞ. Note that Iðf; tÞ depends on the adsorbed surfactant concentration at zðf; tÞ via the term
rðCðzðf; tÞ; tÞÞ in the integrand. The constant D is determined by expanding (31) as f! 0 and equating singular terms to give
D ¼ G
2

and p1ðtÞ ¼ �2 Ið0; tÞ þ
_a
a

� �
: ð33Þ
Eq. (31) is not practical for evolving the map zðf; tÞ, since the Goursat function f ðz; tÞ is as yet unknown. Evolution equations
for the map parameters are derived in Section 4.2.

A relation for dg
dz ðzðf; tÞ; tÞ is found on eliminating f between (29) and (31) and using (28), with the result that
dg
dz
ðzðf; tÞ; tÞÞ ¼

�zðf�1; tÞ
2

zftðf; tÞ
zfðf; tÞ

� fIfðf; tÞ � 1þ fzffðf; tÞ
zfðf; tÞ

� �
Iðf; tÞ þ iD½ 	

� �
þ

�zfðf�1; tÞ
2f

Iðf; tÞ þ iD½ 	 þ
�ztðf�1; tÞ

2
; ð34Þ
which is valid on jfj ¼ 1 and is extended off the unit circle by analytic continuation. The requirement that the right hand side
of (34) is analytic in jfj < 1 except for a known pole at f ¼ 0 (see (27)) determines the time evolution of the map zðf; tÞ, as
seen in Section 4.2.

The complex variable formulation for conservation of adsorbed surfactant (6) is derived by combining the complex ana-
logue of the vectors, dot products and derivatives that appear in it, i.e.
@X
@t

����
n

$ @z
@t

����
m
; rs $

T
jzmj

@

@m
; us $ Refðu1 þ iu2ÞTgT;

j$ � 1
jzmj

Im
zmm

zm

� �
; un $ Refðu1 þ iu2ÞNg; n � rCjS $ �

1
jzmj

@C
@r

����
r¼1

ð35Þ
where T ¼ zm=jzmj is the clockwise oriented surface tangent and C ¼ Cðr; mÞ is the concentration of dissolved surfactant at
zðf ¼ reim; tÞ. If we define
Uðm; tÞ ¼ ðu1 þ iu2Þ
�zm

jzmj
ð36Þ
then the complex form of (6) is
@C
@t
� Re

zt

zm

� �
Cm þ

1
jzmj

@

@m
ReðCUÞð Þ � Im

zmm

zm

� �
ImðCUÞ

� �
¼ 1

Pes

1
jzmj

@

@m
Cm

jzmj

� �
� J
jzmj

@C
@r

����
r¼1
; ð37Þ
which holds on the interface f ¼ eim, where the time derivatives are taken with m fixed. This is the form that the equation
takes in the traditional numerical method, while in the hybrid method the last, surfactant exchange, term is rewritten as
J0@NCjS in the same way that the real form of the conservation law (6) becomes (21) in the large Pe limit.

Eq. (18) for conservation of bulk surfactant is transformed similarly. The tangential velocity of the origin of the intrinsic
frame, O0, is Us ¼ ð@tXjn � tÞt$ ReðztTÞT , (where O0 is chosen to be the image of the point with m ¼ 0) so that
vs ¼ us � Us $ Reððu1 þ iu2 � ztÞTÞT
(cf. (17)). The relations (35) and (36) together with the complex form of @nvpjS constructed from (20) imply that (18)
becomes
@C
@t
þ Re U � ztzm

jzmj

� �
1
jzmj

@C
@m
� 1
jzmj

@

@m
ReðUÞð Þ � Im

zmm

zm

� �
ImðUÞ

� �
N
@C
@N
¼ @2C

@N2 : ð38Þ
This holds in the fluid region N > 0, where the time derivatives are taken with the intrinsic coordinates m and N fixed, and the
initial and boundary conditions are given by (19).

4.2. Boundary integral equations

Following [48] we consider maps zðf; tÞ in which hðf; tÞ is a polynomial of degree N
zðf; tÞ ¼ aðtÞ
f
þ
XN

j¼1

bjðtÞfj; ð39Þ
where the bj’s are complex coefficients. Here (39) is interpreted as the truncated Fourier series expansion of a discrete solu-
tion, although [42] shows (following [48]) that no higher powers of f are generated in a continuous solution for N P 1. Equa-
tions for the coefficients aðtÞ; bjðtÞ are obtained by enforcing the analyticity of the right hand side of (34) in jfj < 1. Define the
Taylor series coefficients bI0ðtÞ;bIkðtÞ by
Iðf; tÞ þ iD ¼ bI0ðtÞ þ
X1
k¼1

bIkðtÞfk; ð40Þ
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where (see (32))
bI0 ¼
1

4p

Z 2p

0

rðm; tÞ
jzfðeim; tÞj dmþ iD;

bIk ¼
1

2p

Z 2p

0

rðm; tÞe�ikm

jzfðeim; tÞj dm; ð41Þ
and we have written rðm; tÞ ¼ rðCðzðeim; tÞ; tÞÞ.
Substitution of (39) and (41) into the right hand side of (34) leads to a Laurent series in f, and matching coefficients of the

series from the right and left hand sides of this equation gives a system of ODE’s for aðtÞ; bjðtÞ. This system is written
(following [48]) by defining the quantities ck
cNþ2 ¼ a�bN;

cNþ1 ¼ a�bN�1;

ck ¼ a�bk�2 �
XNþ1�k

j¼1

jbj
�bkþj�1; 3 6 k 6 N;

c2 ¼ �
XN�1

j¼1

jbjbjþ1;

c1 ¼ a2 �
XN

j¼1

jjbjj2: ð42Þ
The ODE’s then take the form
_c1 ¼ 0;

_ck ¼ �ðk� 1Þ
XNþ2�k

j¼0

bIjckþj þ 2a2ðQ � iBÞdk3; 3 6 k 6 N þ 2: ð43Þ
An expression for the velocity on the interface is given by analytic continuation of (31) to jfj ¼ 1 by contour deformation,
followed by elimination of f ðzÞ from (30), with the result that
u1 þ iu2 ¼ zt � fzfH
r
jzmj

� �
; ð44Þ
where the Hilbert transform H is defined by
Hðhðm; tÞÞ ¼ 1
4pi

PV
Z 2p

0
hðm0; tÞ cot

ðm0 � mÞ
2

dm0 ð45Þ
and PV denotes the Cauchy principal value.
Eqs. (37) and (42), (43) give the desired boundary integral formulation for the interface shape and surfactant concentra-

tion C when the exchange of surfactant between the bulk fluid and the interface, represented by the term Jn � rCjS, is known
by a separate computation of the problem for C. Alternative boundary integral formulations of Stokes flow such as those gi-
ven in [9] can also be used as a basis for the hybrid method proposed here.

4.3. Pure strain and simple shear flows

In the case of an initially circular or elliptical bubble placed in either a pure strain or simple shear flow it can be shown
from Eqs. (42) and (43) that the interface is described at times t > 0 by a conformal map of the truncated form
zðf; tÞ ¼ aðtÞ
f
þ bðtÞf: ð46Þ
This holds when the flow is surfactant-free [48], when there is insoluble surfactant on the interface [42], or with soluble sur-
factant, as just seen in the development of Sections 4.1 and 4.2. In particular, it implies that the interface shape remains ellip-
tical for all time, although the aspect ratio is influenced by the presence of surfactant and its solubility. This result also
depends, as assumed at the outset, on the flow geometry being two dimensional and the interior bubble fluid being inviscid.

(i) Pure Strain
In a pure strain, u ¼ Qðx1;�x2Þ where Q is the capillary number, per (11). Since the imposed flow has vorticity G ¼ 0,
(33) and (41) imply that bI0 is real. The map parameters aðtÞ and bðtÞ are also real, with aðtÞ < 0, and satisfy
d
dt
ðabÞ ¼ �2bI0abþ 2Qa2; að0Þ ¼ �1; bð0Þ ¼ 0; ð47Þ

with the area condition
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a2 � b2 ¼ 1: ð48Þ

The initial conditions of (47) are for a bubble that is initially circular.

(ii) Simple shear

In a simple shear flow, u ¼ �Gðx2;0Þ where G is the shear strength, per (12). Here bI0 and bðtÞ are complex, while
aðtÞ < 0, and the map parameters satisfy
d
dt
ðabÞ ¼ �2bI0ab� iGabþ iGa2

; að0Þ ¼ �1; bð0Þ ¼ 0; ð49Þ

with the area condition

a2 � jbj2 ¼ 1: ð50Þ

With soluble surfactant, the motion of the interface is coupled to the bulk concentration C and the surface concentra-
tion C through the surface tension r in the integral term bI0. We describe below an efficient method for solving the
coupled equations in the physically representative limit of large bulk Peclet number Pe.
5. Hybrid numerical method

Our implementation of the hybrid method combines a fixed grid numerical solution of the boundary value problem (38)
and (19) for dissolved surfactant C with simultaneous solution of the underlying problem for u, p, and C. This has the advan-
tage that there is no need to re-mesh the grid that is used to solve for C as the interface evolves, and since the diffusive term
@2

NC is Oð1Þ in the rescaled transition layer Eq. (38), there is no development of large concentration gradients that requires a
large number of node points to resolve. The underlying flow solver for u; p, and C described in Section 4 is spectrally accu-
rate in space and second order in time, while the solution for the dissolved surfactant concentration C described below is
second order accurate (in space and time). In principle higher order accuracy can be achieved.

To describe the method, the evolution equations, which are (37), with its last term rewritten as J0@nCjS, (38) and (43)
(which simplifies to (47) and (48) for a pure strain and (49) and (50) for a simple shear) are written in the form
z
C

� �
t

¼ F z;C;
@C
@N

����
S

� �
; ð51Þ

Ct ¼ Gðz;C; CÞ þ @
2C

@N2 ; ð52Þ
where F and G depend on the indicated variables and their derivatives. Note that, in terms of the parameterization by m in the
f-plane and time t; F ¼ Fðm; tÞ is defined on the bubble surface, while G ¼ Gðm;N; tÞ is defined in the region exterior to the
bubble. We assume that the bulk concentration C is initially in equilibrium with the far-field concentration, i.e.
Cðm;N; t ¼ 0Þ ¼ 1, and far from the interface we impose the boundary condition Cðm;Nm; tÞ ¼ 1. It is verified that the numer-
ical results do not depend on the particular value of Nm. We introduce the discrete variables mi ¼ 2pi=M for i ¼ 0; . . . ;M � 1
and Nj ¼ jNm=ðP � 1Þ for j ¼ 0; . . . ; P � 1, with the notation Fn

i ¼ Fðmi; tnÞ and Gn
i;j ¼ Gðmi;Nj; tnÞ.

Second order accuracy in time is achieved by performing the time update of Eqs. (51) and (52) in two steps. First we com-
pute the intermediate values ~znþ1

i ; ~Cnþ1
i , and eCnþ1

i;j by a first order Euler method
~znþ1
ieCnþ1
i

 !
¼

zn
i

Cn
i

� �
þ DtFn

i ;

eCnþ1
i;j ¼ Cn

i;j þ Dt Gn
i;j þ

eCnþ1
i;jþ1 þ eCnþ1

i;j�1 � 2eC nþ1
i;j

ðDNÞ2

 !
: ð53Þ
where Cn
i;0 ¼

Cn
i

Kð1�Cn
i Þ

from the boundary condition (19). A second order accurate correction is calculated using a centered
discretization
znþ1
i

Cnþ1
i

 !
¼

zn
i

Cn
i

� �
þ Dt

2
Fn

i þ eFnþ1
i

	 

;

Cnþ1
i;j ¼ Cn

i;j þ
Dt
2

Gn
i;j þ eGnþ1

i;j þ
Cn

i;jþ1 þ Cn
i;j�1 � 2Cn

i;j

ðDNÞ2
þ

Cnþ1
i;jþ1 þ Cnþ1

i;j�1 � 2Cnþ1
i;j

ðDNÞ2

 !
: ð54Þ
The discretizations (53) and (54) are semi-implicit, and the resulting tridiagonal linear systems are inverted by standard
methods.

The right hand sides of (53) and (54) are evaluated at mesh points ðmi;NjÞ as follows. We compute the derivatives of
surface quantities, such as zmðmi; tnÞ and Cmðmi; tnÞ, using a discrete Fourier transform (DFT) and employ a centered, second
order finite difference approximation for Cmðmi;Nj; tnÞ (although we note that in principle all m derivatives can be computed
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in Fourier space). A spectral filter with cutoff of �c ¼ 10�14 is used to prevent amplification of round-off error when taking
derivatives. We also need the normal derivative of the bulk surfactant concentration evaluated at the bubble surface, @NCjS,
which is calculated using the second order, one-sided difference formula
@C
@N

����
S

� �n

i

¼
�3Cn

i;0 þ 4Cn
i;1 � Cn

i;2

2DN
: ð55Þ
The Taylor coefficients bIk defined at (41) are needed to solve the ODEs (43) for the time evolution of the conformal map
parameters, and are calculated via a DFT. The fluid velocity on the bubble surface is also calculated via a DFT and the relation
H½hðmÞ	 ¼ 1
2
ðhþ � h�Þ; ð56Þ
where hþ ¼
P

k>0ĥkeikm is a projection onto the positive wavenumber Fourier components of h, and h� ¼
P

k<0ĥkeikm is a pro-
jection onto the negative wavenumber components. An expression for the time derivative ztðmi; tnÞ is required for the velocity
calculation, and is obtained from the system of ODEs (43), while the normal derivative of the normal fluid velocity relative to
the interface, @nvpjS, is calculated from surface data by the relation (20).

The method generates the time update of the fluid velocity and surface concentration of surfactant in OðMÞ operations,
where M is the number of discretization points on the interface. Calculation of the bulk surfactant concentration requires
OðMPÞ operations, where P is the number of grid points normal to the interface. The operation count increases to OðM2PÞ
for three dimensional flow. Knowledge of the bulk concentration C and its gradient rCjS at the interface is sufficient for
the time update of interface position and surface surfactant concentration in the transition layer equation.

We also require a solution to the advection equation ð@t þ u � rÞC ¼ 0 outside the transition layer, which provides a
boundary or matching condition for the transition layer equation as N !1. Generally, this requires OðMd�1PÞ operations
for Md�1P points in the fluid region for d-dimensional flow. A coarse grid will often suffice, since large concentration gradi-
ents are not expected outside the transition layer. Semi-Lagrangian methods can also be used to track C in regions where it
differs from the equilibrium value C ¼ 1, which can further reduce the operation count. All calculations in this paper assume
a spatially uniform state with C ¼ 1 far from the interface.

6. Traditional numerical method

The hybrid method has been compared with a more traditional numerical approach, i.e. one that uses finite differences on
a curvilinear coordinate system exterior to the bubble, without the separate transition layer reduction. However, due to
separation of scales in the narrow transition layer and the need to accurately resolve the layer, the traditional algorithm
is limited to values of Pe less than about 103 for reasonably fine meshes (e.g. 512 � 512 gridpoints in an annular fluid region
with thickness of a few bubble radii). Our implementation of the traditional method features a novel fast calculation of the
fluid velocity in the region exterior to the bubble.

The algorithm, which is simplest to describe using real variables and vector notation, makes use of the mapping
Xðr; mÞ ¼ xðr; mÞ; yðr; m; Þð Þ ¼ Rezðr; mÞ; Imzðr; mÞð Þ ð57Þ
from the unit disc f ¼ reim for 0 6 r 6 1 to the fluid region exterior to the bubble. The advection–diffusion equation (5) for
dissolved surfactant C is expressed in terms of the orthogonal curvilinear coordinate system defined by the map. Introduce
the unit vectors
er ¼ �
1
l1

@X
@r

; em ¼
1
l2

@X
@m

; ð58Þ
where the scale factors l1ðr; mÞ and l2ðr; mÞ are given by
l1 ¼
@X
@r

���� ����; l2 ¼
@X
@m

���� ����: ð59Þ
The vector er is in the outward normal direction to the coordinate curve traced out by Xðr; mÞ for fixed r, while em points in the
(clockwise) tangential direction to this curve. We recall that
rC ¼ � er

l1

@

@r
þ em

l2

@

@m

� �
C; ð60Þ

r2C ¼ 1
l1l2

@

@r
l2

l1

@

@r
þ @

@m
l1

l2

@

@m

� �
C: ð61Þ
The boundary integral solution of Eqs. (37) and (43) for the conformal map zðf; tÞ and surface concentration of surfactant
Cðm; tÞ described in Section 4.2 is coupled to solution of the advection–diffusion equation for C in the annular region
0 < 1� rm 6 r 6 1.

Various discretizations of the governing equation for C have been considered, including upwind and centered differencing
of the advection term, as well as explicit and implicit treatment of the diffusion term. An implicit ADI method [53] utilizing
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upwind differencing for the advection terms in the equations for both C and C was found to be the most efficient. The ADI
scheme is a two step method, and is implemented with first step
Cnþ1=2
i;j ¼ Cn

i;j þ
Dt
2

wn
i;j

Pe
pn

i;jþ1=2drC
nþ1=2
i;jþ1=2 � pn

i;j�1=2drC
nþ1=2
i;j�1=2 þ qn

iþ1=2;jdmCn
iþ1=2;j � qn

i�1=2;jdmCn
i�1=2;j

h i
� u � rCjni;j

� �
: ð62Þ
Here we have introduced the centered difference operators dr and dm,
drC
n
i;jþ1=2 ¼

Cn
i;jþ1 � Cn

i;j

�Dr
; dmCn

iþ1=2;j ¼
Cn

iþ1;j � Cn
i;j

Dm
; ð63Þ
and
pn
i;jþ1

2
¼ 1

2
l2

l1

����n
i;j

þ l2

l1

����n
i;jþ1

 !
; qn

iþ1
2;j
¼ 1

2
l1

l2

����n
i;j

þ l1

l2

����n
iþ1;j

 !
; wn

i;j ¼
1

l1l2

����n
i;j

: ð64Þ
The subscript ði; jÞ refers to the ðmi; rjÞ gridpoint with rj ¼ 1� rmj
P�1 for j ¼ 0; . . . ; P � 1, and Dm ¼ miþ1 � mi; Dr ¼ rjþ1 � rj. The sec-

ond step of the ADI scheme is
Cnþ1
i;j ¼ Cnþ1=2

i;j þ Dt
2

wnþ1=2
i;j

Pe
pnþ1=2

i;jþ1=2drC
nþ1=2
i;jþ1=2 � pnþ1=2

i;j�1=2drC
nþ1=2
i;j�1=2 þ qnþ1=2

iþ1=2;jdmCnþ1
iþ1=2;j � qnþ1=2

i�1=2;jdmCnþ1
i�1=2;j

h i
� u � rCjnþ1=2

i;j

( )
; ð65Þ
and initial and boundary conditions are given by (19). The discretizations (62) and (65) lead to tridiagonal linear systems that
are readily inverted by standard methods.

Calculation of the advection term u � rC requires the radial and tangential velocity components, which are given by
ur ¼ u � er ¼ �
1
l1

u1
@x
@r
þ u2

@y
@r

� �
;

um ¼ u � em ¼
1
l2

u1
@x
@m
þ u2

@y
@m

� �
: ð66Þ
The upwind difference scheme in the case urjni;j > 0 and umjni;j > 0 is
u � rCjni;j ¼
ur

l1

����n
i;j

d�r Cn
i;j þ

um

l2

����n
i;j

d�m Cn
i;j; ð67Þ
where
d�r Cn
i;j ¼

Cn
i;j � Cn

i;j�1

�Dr
and d�m Cn

i;j ¼
Cn

i;j � Cn
i�1;j

Dm
: ð68Þ
If ur jni;j < 0 or umjni;j < 0 the corresponding difference quotient in (67) is replaced by
dþr Cn
i;j ¼

Cn
i;jþ1 � Cn

i;j

�Dr
or dþm Cn

i;j ¼
Cn

iþ1;j � Cn
i;j

Dm
; ð69Þ
respectively. The derivatives @X
@r ðmi; rjÞ and @X

@m ðmi; rjÞ at (58) and (59), which define the unit vectors er; em and scale factors l1; l2

are calculated at the ðmi; rjÞ gridpoint with the aid of the relations
zrðrjeimi Þ ¼ zfðrjeimi Þeimi ; zmðrjeimi Þ ¼ zfðrjeimi Þirjeimi ; ð70Þ
where zf is determined by differentiation of (39).
Our implementation of the traditional method is first order accurate in time and space. This can in principle be improved

to higher order accuracy, although the version here was found sufficient for the purpose of comparison with the hybrid
method. The scheme was found to be stable for Dt K 10�3 over a wide range of Peclet number and mesh sizes up to
1024 � 1024.

6.1. Velocity calculation

Calculation of the fluid velocity (66) exterior to the bubble surface is the most expensive component of the traditional
method. It requires evaluation of the velocity from (44) at OðMPÞ grid positions zðfi;jÞ, where fi;j ¼ rjeimi is a discretization
of an annular preimage in the unit disk. A naive implementation of the boundary integral method would accomplish this
by contour integration, i.e. by evaluation of the Goursat functions f ðfi;jÞ and gðfi;jÞ from (31) and (34), with Iðfi;jÞ calculated
by discretization of the contour integral (32) at a cost of OðM2PÞ operations. This can be improved to OðMPÞ operations using
a suitable fast method such as the fast multipole method [54]. As an alternative that can be used with the complex variable
and conformal mapping formulation of Stokes flow used here, we describe a new and simple procedure to evaluate the veloc-
ity in OðMPÞ operations using analytic continuation of the boundary values.



Table 1
CPU time to compute a solution at t ¼ 1 for timestep Dt ¼ 10�3.

M = P Traditional Hybrid

64 15.48 3.13
128 57.58 5.82
256 231.26 17.78
512 1023.50 98.03
1024 4350.96 438.96
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The Goursat functions f ðfÞ; gðfÞ are first calculated on the unit disk fi ¼ eimi from Eqs. (31) and (34), respectively (for
brevity we write fi ¼ fi;0). Details are given for the evaluation of f ðfi;jÞ, since the computation of gðfi;jÞ is similar. The discrete
Fourier transform of f gives the formula
f ðfiÞ ¼
XM�2

k¼�1

f̂ keikmi ; i ¼ 1; . . . ;M; ð71Þ
where the summation is over �1 6 k 6 M � 2 since f ðfÞ is analytic on the unit disk with the exception of a simple pole at the
origin. The analytic continuation of f to the interior of the unit disk, f ðfi;jÞ for j ¼ 1; . . . ; P � 1, is numerically implemented via
multiplication of the kth Fourier coefficient by rk

j , i.e.
f ðfi;jÞ ¼
XM�2

k¼�1

f̂ krk
j eikmi ; i ¼ 1; . . . ;M: ð72Þ
Since rj < 1 this is a well-posed operation. The inverse FFT provides the real space values f ðfi;jÞ for i ¼ 1; . . . ;M and fixed j in
OðM log MÞ operations. Repeating this procedure for each j ¼ 1; . . . ; P � 1 gives f ðfi;jÞ at all gridpoints in OðMPÞ operations
(omitting logarithmic corrections). The Goursat function gðfÞ and conformal map zðfÞ are similarly computed for f in the
interior of the unit disk, and derivatives such as ffðfi;jÞ and gfðfi;jÞ are calculated via the DFT. The velocity is then evaluated
from (23), where
�f 0ð�zÞ ¼ ffðfi;jÞ
zfðfi;jÞ

; �g0ð�zÞ ¼
gfðfi;jÞ
zfðfi;jÞ

: ð73Þ
This formulation of a traditional method requires OðMPÞ operations per time step in 2D flow, which is the same as the
current implementation of the hybrid method. Numerical tests summarized in Table 1 reflect the OðMPÞ dependence of
CPU time on the number of gridpoints, and indicate that the implementation of the hybrid method is about 10 times faster
than the traditional method.
7. Numerical results

When the surfactant is insoluble ðJ ¼ 0Þ the method has been validated by comparison with exact steady solutions ob-
tained from complex variable theory. Details of the validation and application of the method on several problems of bubble
dynamics with insoluble surfactant, in both steady and unsteady flows, are given in [42].

The implementation of the hybrid method with soluble surfactant ðJ > 0Þwas checked to have the expected second order
accuracy in time and space and was verified by comparing numerical results with analytical solutions. A simple analytical
solution describes the unsteady adsorption of surfactant from a spatially uniform bulk state C ¼ 1 on to an initially clean
bubble surface in the absence of flow when the bubble surface is an infinite sink of surfactant, i.e. CjS ¼ 0 for all t. Agreement
between the numerical and analytical solutions is excellent.

As an additional test, we compare with an asymptotic solution of the transition layer and fluid equations, valid for small
capillary number Q � 1 and E ¼ 0, which is derived in the Appendix. The solution describes the steady state shape and bulk
surfactant concentration for a bubble in an imposed strain, when the surface is an infinite sink of surfactant (i.e. CjS ¼ 0). To
leading order in Q, the conformal map parameters and steady surface velocity components are given by
a ¼ �1; b ¼ �2Q ; us ¼ �Q sin 2m; un ¼ 0; ð74Þ
and the solution to Eq. (38) for the surfactant concentration C is
Cðm;NÞ ¼ erf
ffiffiffiffi
Q

p
N sin m

	 

; ð75Þ
where the error function erfðzÞ ¼ ð2=
ffiffiffiffi
p
p
Þ
R z

0 e�x2 dx. Note that there is a nonuniformity in the concentration as N !1 when
m ¼ 0; p, i.e. at the bubble ends.

Fig. 1 compares a solution computed with the hybrid numerical method to the asymptotic solution (74) and (75). The
hybrid method was run long enough for the dynamics to reach a steady state, and the figure shows the dissolved surfactant
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Fig. 1. Comparison of steady solution computed by the hybrid method (solid curves) with the asymptotic solution (74) and (75) (diamonds) for Q = 0.025.
Left panel: bulk concentration Cðmi;NÞ for different mi . Right panel: surface velocity component us .

Fig. 2. Bubble shape and bulk surfactant concentration C computed by the hybrid numerical method (left) and traditional method (right). The main physical
parameter values are Pe ¼ 103; Q ¼ 0:25, and t ¼ 1:0, and computational parameters are M ¼ P ¼ 256; rm ¼ 0:9, and Dt ¼ 5:0� 10�4. Good agreement
between the two methods is found at this low Pe.
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concentration Cðm;NÞ versus the scaled normal coordinate N (left panel, solid curves) at positions zðmiÞ ði ¼ 1; . . . ;17Þ that are
equidistant in m along the bubble surface within one quadrant of the x; y-plane. The solution in the other quadrants follows
by symmetry. The lowest solid curve corresponds to m ¼ 0, with increasing m indicated in the figure. The diamond markers
give the solution (75), and are in excellent agreement with the computed solution. We note that the difference between the
two solutions near N ¼ 30 is due to the imposition of artificial boundary conditions Cðm;NmÞ ¼ 1 at finite Nm in the compu-
tational domain. The numerically computed surface velocity component us (Fig. 1, right panel) and bubble shape are indis-
tinguishable to within plotting resolution from the asymptotic values.

The hybrid method is compared in Fig. 2 with the traditional numerical method of Section 6, which uses finite differences
on a curvilinear coordinate system exterior to the bubble, without the separate transition layer reduction. The traditional
method implemented here retains a degree of adaptivity, since by varying the width rm of the annular region in the f-plane
we can cluster gridpoints in a narrow layer adjacent to the bubble surface. We compare the accuracy and efficiency of the
hybrid method with this fixed grid, nonadaptive traditional method by fixing rm ¼ 0:9. Fig. 2 shows the shape and bulk sur-
factant concentration C for an initially circular bubble stretched by a pure strain with capillary number Q ¼ 0:25 and
Pe ¼ 103, and indicates good agreement between the two methods at this (physically unrealistic) low value of Pe. Compu-
tational parameters are M ¼ P ¼ 256 and Dt ¼ 5:0� 10�4, and physical parameter values are E ¼ 0:1, K ¼ 1:5 and J0 ¼ 1,
i.e. J ¼ 1=Pe1=2. The initial surface concentration of surfactant is C = 0.5 and the initial bulk concentration of surfactant is
C = 1. We note that in the hybrid method, M and P can be taken as small as M ¼ P ¼ 64 without changing the results to within
plotting resolution. For larger Pe, the traditional method with the above parameter values begins to lose accuracy due to
inadequate resolution of the transition layer.

Profiles for the bulk surfactant concentration data C of Fig. 2 are shown versus the normal coordinate n ¼ Pe�1=2N in Fig. 3
at fixed locations on the bubble surface as computed by the hybrid method (dashed curves) and the traditional method (solid
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curves). This shows that the bulk concentration immediately adjacent to the interface CS is relatively high at the bubble ends,
where surfactant tends to leave the interface, and is relatively low at the mid-section, where surfactant is adsorbed onto the
interface from the bulk flow. At this value of Pe ¼ 103 the profiles found by the two methods are close, and are sufficiently
close that there is no discernible difference between them in Fig. 2. The value for the normal derivative @nCjS as computed by
both methods, and hence the bulk-interface surfactant exchange term, is in particularly good agreement.

Fig. 4 shows bubble profiles and bulk surfactant concentration computed by the hybrid method with the same capillary
number Q ¼ 0:25 as in Fig. 2 but with a larger, more realistic, Peclet number Pe ¼ 104. The bulk concentration C is shown at
times t ¼ 1:0 (upper left panel) and t ¼ 4:0 (upper right panel), and the bubble shape (lower left panel) and surface
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Fig. 3. Bulk surfactant concentration profiles C versus normal coordinate n ¼ Pe�1=2N for the data of Fig. 2. Profiles for the hybrid method are shown by
dashed curves and profiles for the traditional method are shown by solid curves. The profiles are plotted at fixed locations on the bubble surface, from m ¼ 0
at the bubble end where CjS is largest to m ¼ 5p=16 in increments of p=16 and at the mid-section where m ¼ p=2.
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Fig. 4. Evolution of a bubble in a pure strain, computed by the hybrid method with Pe ¼ 104; Q ¼ 0:25, and other parameters as in Fig. 2. Bulk surfactant
concentration C at t ¼ 1:0 (upper left panel) and t ¼ 4:0 (upper right panel), bubble shape (lower left panel) and surface surfactant concentration C (lower
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surfactant concentration C (lower right panel) are plotted from t ¼ 0:0 to 4.0. Other parameter values are the same as in
Fig. 2. The figure clearly illustrates the narrowness of the transition layer at this larger Pe, which makes numerical calculation
using traditional methods very difficult.

Fig. 5 presents the surface concentration of surfactant Cðm; tÞ computed by the hybrid method (dotted red curve) and that
calculated by the traditional method (solid blue curves) at t ¼ 1:0 for Pe ¼ 0:5� 102; 102; 103; 104 and 0:5� 105. The num-
ber of gridpoints is fixed at M ¼ P ¼ 256, and other parameters are as in Fig. 2. Since the transition layer Eq. (18) is con-
structed to be exact in the limit Pe!1, we expect solutions computed by the traditional method to approach the hybrid
solution for increasing Pe. This is indeed the case when the Peclet number Pe is less than about 103, as seen in Fig. 5. How-
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Fig. 5. Surface concentration Cðm; tÞ computed at t ¼ 1:0 by the hybrid method (dotted red curve) and by the traditional method (solid blue curves) for
Pe ¼ 0:5� 102; 102; 103; 104 and 0:5� 105. Parameters are as in Fig. 2. (For interpretation of the references in colour in this figure legend, the reader is
referred to the web version of this article.)
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ever, when Pe J 103, the traditional method with the present fixed resolution is unable to resolve the large gradients in sur-
factant concentration near the interface, especially when m ’ 0;p;2p (i.e. at the bubble ends), and the profile for C with Pe
increasing above 103 diverges from the expected limiting solution. We improved the accuracy of the solution computed by
the traditional method with Pe ¼ 104 by setting rm ¼ 0:1, so that gridpoints are clustered in a thinner annular layer near the
interface. Fig. 6 shows that, at this greatly increased resolution, the traditional and hybrid methods give results that are
nearly indistinguishable.

Fig. 7 shows the bulk surfactant concentration C, time-dependent shapes, and surface concentration C for a bubble in a
simple shear flow, computed by the hybrid method. Main parameter values are Pe ¼ 104 and G ¼ �2B ¼ 0:25, with other
parameter values as in Fig. 2. The bubble evolves through a series of elliptical shapes with aspect ratio and orientation that
change in time. In both strained and sheared bubbles, the concentration of bulk surfactant at the bubble ends is much higher
than at points where the drop surface is flat. This is due to surfactant leaving the bulk flow and adsorbing onto the bubble
surface in its middle, flat part, and desorbing from the surface to re-enter the bulk flow at the bubble ends. Surfactant is ad-
vected between these regions by the imposed shearing or straining flow. This mechanism of surfactant advection occurs in
tipstreaming, and numerical studies of sheared or strained drops with small internal viscosity in the presence of insoluble
surfactant that are resolved have been given by Eggleton et al. [3] and Bazhlekov et al. [15].
8. Conclusion

We have presented a hybrid numerical method for the computation of fluid interfaces with soluble surfactant. The meth-
od accurately resolves the transition layer adjacent to the interface that occurs in the physically realistic limit of large bulk
Peclet number Pe!1, in which the surfactant concentration varies rapidly. Faithful resolution of surfactant gradients in the
layer is essential for accurate evaluation of surfactant exchange between the interface and bulk fluid, which in turn effects
surface tension and interface dynamics.

The behavior in the transition layer is obtained by a singular perturbation analysis of the governing equations near the
interface S in the limit Pe!1. This uses an intrinsic, i.e. time-dependent, interface-fitted coordinate system with a scaled
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normal coordinate N ¼ n=�, where � ¼ Pe�1=2 and � is the spatial scale of the layer width. The pressure and fluid velocity com-
ponents do not depend on the scaled coordinate N, and the leading order equation for dissolved surfactant C in the transition
layer is (18), subject to boundary conditions (19) that C ¼ CðCÞ on S and C ! 1 as N !1.

The tangential fluid velocity at the interface, us, and normal derivative of the normal fluid velocity relative to the inter-
face, @nvpjS, which appear in the transition layer Eq. (18), are evaluated accurately by existing surface based numerical meth-
ods, such as the boundary integral or boundary element method. Also, the relation C ¼ CðCÞ between surfactant
concentration adsorbed on the interface C and the neighboring dissolved concentration C is known.

Our implementation of the hybrid numerical algorithm combines a fixed grid numerical solution of the boundary value
problem for dissolved surfactant C in the intrinsic coordinate frame with simultaneous boundary integral solution of the
problem for u; p, and C. This has the advantage that there is no need to re-mesh the grid that is used to solve for C as
the interface evolves, even for highly contorted interface shapes. Since the diffusive term @2

NC is Oð1Þ in the rescaled transi-
tion layer Eq. (18), there is no development of large concentration gradients that requires a large number of node points to
resolve. The method is effective for arbitrarily large values of Pe.

The algorithm is based on a complex variable formulation of the boundary integral equations for evolution of an inviscid
bubble in 2D Stokes flow. The imposed flow that stretches the bubble is an arbitrary linear strain or shear. The method gen-
erates the time update of the fluid velocity and surface concentration of surfactant in OðMÞ operations, where M is the num-
ber of discretization points on the bubble surface. Calculation of the bulk surfactant concentration C requires OðMPÞ
operations, where P is the number of gridpoints normal to the interface. There is a Green’s function representation of the
solution to Eq. (18) for C in the transition layer, which may reduce the operation count, and this is the subject of future work.

The hybrid method has been compared with a more traditional numerical approach that uses finite differences on a mov-
ing, body-fitted grid in the fluid region exterior to the bubble, without the separate transition layer reduction. The results are
in good agreement for reasonably fine meshes when Pe is less than about 103. At larger, more realistic Pe, the traditional
method becomes prohibitively expensive due to the separation of scales in the transition layer and the need to accurately
resolve its dynamics.

Despite the limitations of a traditional method to unphysically small Pe, the choice of a complex variable, boundary inte-
gral conformal mapping technique for the underlying flow solver greatly facilitates computation of surfactant solubility ef-
fects by a traditional method. This occurs since (i) analytic continuation and a DFT can be used to accurately and efficiently
evaluate the off-surface fluid velocity that appears in the unscaled Eq. (5) for the conservation of dissolved surfactant C. This
leads to a traditional method that achieves the same OðMPÞ operation count as the hybrid method. (ii) The moving, body-
fitted grid used to compute C in the z-plane is generated simply as the image under the conformal map of fixed radial grid-
points that are specified in an annulus 0 < 1� rm 6 jfj 6 1 of the fixed computational domain 0 6 jfj 6 1 in the f-plane. By
decreasing the width of the annulus rm, gridpoints are readily clustered closer to the interface in the z-plane, and computa-
tion can be continued at larger Pe than could be attained otherwise. The conformal mapping technique is however confined
to use in 2D flow, and becomes slower and more difficult to implement for a bubble interior that is not inviscid.

The hybrid method for soluble surfactant has been implemented here in low Reynolds number flow, although this is not a
limitation. Numerical methods that are designed to solve for moving interfaces in Navier–Stokes flow at intermediate Rey-
nolds numbers, such as the immersed interface or level set method, can be combined with Eq. (18) to accurately capture the
dynamics of the transition layer. This extension will be pursued in future work.
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Appendix A. A.1. Steady solution for Q � 1

Here we derive the steady state solution (74) and (75) in the limit of small capillary number Q � 1 with E ¼ 0 and CjS ¼ 0.
The conformal map zðfÞ is given by (46) where the map parameters a; b satisfy (47) with d

dt � 0. For small Q the bubble is only
slightly deformed from a circle, so that b is also small. Evaluating the integral bI0 of (41) with r ¼ 1 and b small, we find that
bI0 ¼
1

2jaj þ Oðb2Þ; ð76Þ
where the remainder is Oðb2Þ since for a pure strain bI0 and b are real. When (76) is substituted into the steady version of (47),
i.e. Qa ¼ bI0b, since a is real and negative, b ¼ �2Qa2 at leading order. Then from the bubble area constraint (48),
a ¼ �1þ OðQ 2Þ; b ¼ �2Q þ OðQ3Þ: ð77Þ
The fluid velocity at the interface is computed from (44) and (45) by expanding the map for small b, to give
u1 þ iu2jS ¼
ib

2jaj e
�im sin 2m
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at leading order. The complex velocity U ¼ us þ iun of (36) is therefore
U ¼ �Q sin 2m;
which, with (77), gives (74).
The transition layer equation in complex form (38) becomes
Q � sin 2m
@C
@m
þ 2 cos 2mN

@C
@N

� �
¼ @2C

@N2 ;
to leading order in Q, which in terms of the coordinate n ¼ cos 2m is
2Q ð1� n2Þ @C
@n
þ nN

@C
@N

� �
¼ @2C

@N2 : ð78Þ
The solution sought for C is periodic in n, with C ¼ 0 on the interface N ¼ 0 and C ! 1 as N !1. Following [55] we look for a
similarity solution C ¼ CðgÞ where g ¼ N=cðnÞ, which leads to the system of equations
Cgg ¼ �DgCg;

ðn2 � 1Þccn þ nc2 ¼ � D
2Q

;

where D is an arbitrary positive constant, and we choose D ¼ 2. The solution of this system that satisfies the boundary con-
ditions is
CðgÞ ¼ erfðgÞ;

c2ðnÞ ¼ ð2=QÞð1þ nÞ þ K

1� n2 ;
where K is a constant. We choose K ¼ 0, so that cðnÞ is finite when n ¼ �1, since this implies that the solution for C is not
identically zero for N > 0 at the top and bottom poles of the bubble. In terms of m, this gives g ¼

ffiffiffiffi
Q
p

N sin m and the expression
for C of (75).
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